Innov. & IM
Technology Leading and Innovation Drive

As a high-tech enterprise founded on patented technology, CORUN has always adhered to the principle of “technology leading and innovation drive”. We continue to promote technological innovation iteration with the R&D strategy of “producing one generation, researching and developing one generation, and reserving one generation”, and build core competitiveness in areas such as innovative processes for extracting, mining, and smelting new energy metals, new types of batteries and materials, battery recycling, and energy storage safety systems.

  

Dr. Zhong Faping, the founder of CORUN, takes “Revitalize the Country through Science and Technology, Serve the Nation through Industry” as his mission, an has long been engaged in the basic research and engineering development of high-performance green batteries, key materials and new energy storage technologies. He is one of the pioneers of new energy storage in China. In 2009, with the approval of the NDRC, CORUN took the lead in establishing the National Engineering Research & Test Center for Advanced Energy Storage Materials. Together with Central South University, Wuhan University, Shenzhen University, etc., it jointly created an interdisciplinary industry-academia-research collaborative innovation consortium in the fields of new energy, new materials and new technologies. This consortium focuses on business needs and accelerates the research and development of key core technologies in the fields of new lithium carbonate smelting technology, battery recycling and energy storage, providing solid support for the engineering and industrialization of scientific and technological achievements.

  

To date, CORUN has obtained over 900 authorized patents, won two second prizes of the National Science and Technology Progress Award and five provincial and ministerial science and technology awards. Its technological achievements cover fields such as new energy metal extraction and recycling, advanced electrochemical energy storage materials and devices, advanced energy conversion materials and devices, and new energy equipment and systems.

  

CORUN is committed to establishing interdisciplinary cross-innovation, full industry chain collaboration, industry-wide national scientific research platform planning and leadership, and a holistic thinking and collaborative innovation mechanism for a closed-loop full industry chain of government-industry-academia-research-finance through platform leadership (industry-wide national scientific research platform planning and leadership, with full-chain participation in technological innovation across industry, academia, research, and application), technology integration (forming an industrial innovation consortium for interdisciplinary, cross-professional, and cross-field integration and collaboration, concentrating efforts to overcome key technologies), resource sharing (sharing scientific research resources within the consortium, jointly establishing an innovation fund for the industrial consortium, and sharing technological achievements), and mechanism innovation (institutional and systematic innovation to achieve the “intersection, integration, and collaboration” of innovation resources).

Advanced Technology
  • Innovative lithium extraction technology
           Currently, the sulfate process is predominantly used for extracting lithium from lepidolite, posing severe issues such as low resource utilization, high energy consumption per unit output, significant pollution, and enormous volumes of tailings. Using the sulfate process, approximately 300,000 tons of lepidolite concentrate are required to produce 10,000 tons of lithium carbonate. Besides extracting less than 2% of the lithium in the concentrate, other elements like Si, Al, K, and Rb are not effectively utilized, resulting in vast amounts of tailings that are challenging to dispose of.
           Based on a profound understanding of advanced metallurgical technologies and process theories, we will develop innovative lithium extraction technology to achieve the harmless, reduced, resource-based and high-value comprehensive utilization of lithium ore resources. The expected outcomes include:
           1) Optimal quality: The quality of lithium salt products is improved, with a yield of more than 92%;
           2) Minimized energy consumption: The process flow is shortened for energy saving and cost reduction.
           3) Maximized resource utilization: Resource utilization value increase by over tenfold through cross-industry collaboration, achieving maximized utilization and generating minimal waste tailings;
           4) Minimized emissions: Ultra-low solid, liquid, and gaseous emissions, ensuring “green” products and production processes.
  • Hybrid energy storage technology
           Energy storage systems (ESS) have diverse application scenarios across the power generation, transmission, distribution, and consumption sides, as well as indoor, outdoor, high-temperature, low-temperature, and high-altitude environments. These various applications pose different demands on storage systems, which in turn leads to different requirements for performance indicators such as specific energy, specific power, rate performance, low-temperature performance, and high-temperature performance. Thus, adapting energy storage technologies to meet specific application scenarios is one of the key directions for future development. Any energy storage technology that has unique characteristics and advantages can be generally suited for particular application scenarios.
           The development of hybrid energy storage technology focuses on research into the configuration, grouping, management, and collaborative control technologies of storage units with different characteristics, in order to meet the diverse demands of various application scenarios. This approach helps reduce overall system investment costs while enhancing the safety, reliability, and lifespan of energy storage systems.
  • Energy storage system integration technology
           Energy storage system integration combines various subsystems, including batteries, power conversion systems (PCS), battery management systems (BMS), energy management systems (EMS), fire protection systems, environmental control systems, and electric control systems. This multidisciplinary integration involves fields such as electrochemistry, power electronics, information management, and thermal management. Based on the research achievements of the National Engineering Research & Test Center for Advanced Energy Storage Materials, CORUN integrates its extensive experience in the automotive industry’s power battery R&D, application, and manufacturing processes. The company improves system safety and economy through a full-process approach that includes research and design, equipment selection, integrated production, and final testing and verification. Big data technologies are also utilized to enhance the intelligence of the system.
  • Intrinsically safe aqueous nickel-metal hydride battery technology
           Traditional nickel-metal hydride (Ni-MH) batteries have several advantages, including high safety, long life, high power, and a wide temperature range. Ni-MH batteries have been widely used in hybrid electric vehicles (HEVs) and the consumer electronics sector (3C), yielding substantial results. However, Ni-MH batteries have some drawbacks, including low cell capacity and high cost per watt-hour (Wh), making them less competitive for large-scale energy storage applications.
          Nickel-hydrogen batteries still belong to the aqueous battery system and possess intrinsic safety features. Unlike Ni-MH batteries, nickel-hydrogen batteries do not use rare earth hydrogen storage alloys that contain nickel and cobalt. Therefore, nickel-hydrogen battery cells can be made in larger capacities. As a result, their cost per watt-hour is significantly lower compared to Ni-MH batteries. Additionally, nickel-hydrogen batteries have a different capacity degradation mechanism, which allows them to achieve a service life of up to 30,000 cycles, far surpassing the lifespan of Ni-MH batteries.
  • High-performance water electrolysis material technology for hydrogen production
           Hydrogen energy is a strategic emerging industry with promising long-term development prospects. It is expected that by 2030, the hydrogen energy industry will reach a scale of one trillion yuan, with green hydrogen accounting for 30%. Hydrogen production plays a key role in the hydrogen economy. Water electrolysis technology for hydrogen production primarily includes the following technologies: Alkaline Water Electrolysis (AWE), Proton Exchange Membrane Electrolysis (PEM), Anion Exchange Membrane Electrolysis (AEM), and Solid Oxide Electrolysis (SOE). Among these, AWE has already been fully commercialized, while PEM is in the early stages of commercialization. AWE remains the mainstream and mature technology. Current AWE for hydrogen production faces challenges such as long response time, high maintenance costs, corrosion from strong alkalis, and higher DC electricity consumption. Therefore, there is a need for technological upgrades and improvements in the industry. The next generation of alkaline electrolysis systems for hydrogen production is focusing on achieving lower costs and higher performance, with an emphasis on large-scale, low-loss, fast-response, and wide-load capabilities.
           The development of high-performance water electrolysis material technology for hydrogen production mainly focuses on: (1) Development of catalysts: Research and preparation of catalysts, primarily composed of transition metals and their alloys, oxides, sulfides, nitrides, phosphides, etc., from the eighth subgroup, to achieve higher HER (Hydrogen Evolution Reaction) and OER (Oxygen Evolution Reaction) activity, lower overpotentials, and higher electrolysis current densities. (2) Development of new electrodes: Research on new 3D-structured electrodes, along with optimization and improvement of the electrolyzer chamber structure, to significantly improve the hydrogen production rate per unit area and enhance electrolysis efficiency.
  • All-solid-state battery technology
           Current liquid lithium-ion batteries use carbonate-based organic solvents in their electrolyte, which have low flashpoints and boiling points, making liquid lithium-ion batteries a major safety risk. In contrast, solid-state lithium-ion batteries use solid-state electrolytes that do not contain liquid organic solvents, making them much safer and offering higher energy density. Solid-state lithium-ion batteries represent a key development direction for the future of lithium-ion batteries.
           The development of solid-state battery technology mainly revolves around: (1) research into high-efficiency methods to prepare solid-state electrolytes with high stability and high lithium-ion conductivity; (2) the development of techniques for preparing solid-state electrodes, including both wet and dry electrode preparation methods, as well as industrialization techniques.
National Major Projects and Scientific Research Missions
Research & Development Bases